skip to main content


Search for: All records

Creators/Authors contains: "Siriwardane, Edirisuriya M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Data driven generative deep learning models have recently emerged as one of the most promising approaches for new materials discovery. While generator models can generate millions of candidates, it is critical to train fast and accurate machine learning models to filter out stable, synthesizable materials with the desired properties. However, such efforts to build supervised regression or classification screening models have been severely hindered by the lack of unstable or unsynthesizable samples, which usually are not collected and deposited in materials databases such as ICSD and Materials Project (MP). At the same time, there is a significant amount of unlabelled data available in these databases. Here we propose a semi-supervised deep neural network (TSDNN) model for high-performance formation energy and synthesizability prediction, which is achieved via its unique teacher-student dual network architecture and its effective exploitation of the large amount of unlabeled data. For formation energy based stability screening, our semi-supervised classifier achieves an absolute 10.3% accuracy improvement compared to the baseline CGCNN regression model. For synthesizability prediction, our model significantly increases the baseline PU learning's true positive rate from 87.9% to 92.9% using 1/49 model parameters. To further prove the effectiveness of our models, we combined our TSDNN-energy and TSDNN-synthesizability models with our CubicGAN generator to discover novel stable cubic structures. Out of the 1000 recommended candidate samples by our models, 512 of them have negative formation energies as validated by our DFT formation energy calculations. Our experimental results show that our semi-supervised deep neural networks can significantly improve the screening accuracy in large-scale generative materials design. Our source code can be accessed at https://git/hub.com/usccolumbia/tsdnn. 
    more » « less
  2. Abstract

    Discovering new materials is a challenging task in materials science crucial to the progress of human society. Conventional approaches based on experiments and simulations are labor-intensive or costly with success heavily depending on experts’ heuristic knowledge. Here, we propose a deep learning based Physics Guided Crystal Generative Model (PGCGM) for efficient crystal material design with high structural diversity and symmetry. Our model increases the generation validity by more than 700% compared to FTCP, one of the latest structure generators and by more than 45% compared to our previous CubicGAN model. Density Functional Theory (DFT) calculations are used to validate the generated structures with 1869 materials out of 2000 are successfully optimized and deposited into the Carolina Materials Databasewww.carolinamatdb.org, of which 39.6% have negative formation energy and 5.3% have energy-above-hull less than 0.25 eV/atom, indicating their thermodynamic stability and potential synthesizability.

     
    more » « less
  3. Two‐dimensional (2D) materials offer great potential in various fields like superconductivity, quantum systems, and topological materials. However, designing them systematically remains challenging due to the limited pool of fewer than 100 experimentally synthesized 2D materials. Recent advancements in deep learning, data mining, and density functional theory (DFT) calculations have paved the way for exploring new 2D material candidates. Herein, a generative material design pipeline known as the material transformer generator (MTG) is proposed. MTG leverages two distinct 2D material composition generators, both trained using self‐learning neural language models rooted in transformers, with and without transfer learning. These models generate numerous potential 2D compositions, which are plugged into established templates for known 2D materials to predict their crystal structures. To ensure stability, DFT computations assess their thermodynamic stability based on energy‐above‐hull and formation energy metrics. MTG has found four new DFT‐validated stable 2D materials: NiCl4, IrSBr, CuBr3, and CoBrCl, all with zero energy‐above‐hull values that indicate thermodynamic stability. Additionally, GaBrO and NbBrCl3are found with energy‐above‐hull values below 0.05 eV. CuBr3and GaBrO exhibit dynamic stability, confirmed by phonon dispersion analysis. In summary, the MTG pipeline shows significant potential for discovering new 2D and functional materials.

     
    more » « less
  4. Abstract Pre-trained transformer language models (LMs) on large unlabeled corpus have produced state-of-the-art results in natural language processing, organic molecule design, and protein sequence generation. However, no such models have been applied to learn the composition patterns for the generative design of material compositions. Here we train a series of seven modern transformer models (GPT, GPT-2, GPT-Neo, GPT-J, BLMM, BART, and RoBERTa) for materials design using the expanded formulas of the ICSD, OQMD, and Materials Projects databases. Six different datasets with/out non-charge-neutral or EB samples are used to benchmark the generative design performances and uncover the biases of modern transformer models for the generative design of materials compositions. Our experiments show that the materials transformers based on causal LMs can generate chemically valid material compositions with as high as 97.61% to be charge neutral and 91.22% to be electronegativity balanced, which has more than six times higher enrichment compared to the baseline pseudo-random sampling algorithm. Our LMs also demonstrate high generation novelty and their potential in new materials discovery is proved by their capability to recover the leave-out materials. We also find that the properties of the generated compositions can be tailored by training the models with selected training sets such as high-bandgap samples. Our experiments also show that different models each have their own preference in terms of the properties of the generated samples and their running time complexity varies a lot. We have applied our materials transformers to discover a set of new materials as validated using density functional theory calculations. All our trained materials transformer models and code can be accessed freely at http://www.github.com/usccolumbia/MTransformer . 
    more » « less
  5. Abstract

    Semiconductor device technology has greatly developed in complexity since discovering the bipolar transistor. In this work, we developed a computational pipeline to discover stable semiconductors by combining generative adversarial networks (GAN), classifiers, and high-throughput first-principles calculations. We used CubicGAN, a GAN-based algorithm for generating cubic materials and developed a classifier to screen the semiconductors and studied their stability using first principles. We found 12 stable AA$${}^{\prime}$$MH6semiconductors in the F-43m space group including BaNaRhH6, BaSrZnH6, BaCsAlH6, SrTlIrH6, KNaNiH6, NaYRuH6, CsKSiH6, CaScMnH6, YZnMnH6, NaZrMnH6, AgZrMnH6, and ScZnMnH6. Previous research reported that five AA$${}^{\prime}$$IrH6 semiconductors with the same space group were synthesized. Our research shows that AA$${}^{\prime}$$MnH6and NaYRuH6semiconductors have considerably different properties compared to the rest of the AA$${}^{\prime}$$MH6semiconductors. Based on the accurate hybrid functional calculations, AA$${}^{\prime}$$MH6semiconductors are found to be wide-bandgap semiconductors. Moreover, BaSrZnH6and KNaNiH6are direct-bandgap semiconductors, whereas others exhibit indirect bandgaps.

     
    more » « less
  6. Abstract

    The availability and easy access of large-scale experimental and computational materials data have enabled the emergence of accelerated development of algorithms and models for materials property prediction, structure prediction, and generative design of materials. However, the lack of user-friendly materials informatics web servers has severely constrained the wide adoption of such tools in the daily practice of materials screening, tinkering, and design space exploration by materials scientists. Herein we first survey current materials informatics web apps and then propose and develop MaterialsAtlas.org, a web-based materials informatics toolbox for materials discovery, which includes a variety of routinely needed tools for exploratory materials discovery, including material’s composition and structure validity check (e.g. charge neutrality, electronegativity balance, dynamic stability, Pauling rules), materials property prediction (e.g. band gap, elastic moduli, hardness, and thermal conductivity), search for hypothetical materials, and utility tools. These user-friendly tools can be freely accessed athttp://www.materialsatlas.org. We argue that such materials informatics apps should be widely developed by the community to speed up materials discovery processes.

     
    more » « less